"Machine learning"

Block Stability for MAP Inference

To understand the empirical success of approximate MAP inference, recent work (Lang et al., 2018) has shown that some popular approximation algorithms perform very well when the input instance is stable. The simplest stability condition assumes that …

Evaluating Reinforcement Learning Algorithms in Observational Health Settings

Much attention has been devoted recently to the development of machine learning algorithms with the goal of improving treatment policies in healthcare. Reinforcement learning (RL) is a sub-field within machine learning that is concerned with learning …

Learning Topic Models - Provably and Efficiently

Learning Weighted Representations for Generalization Across Designs

Predictive models that generalize well under distributional shift are often desirable and sometimes crucial to building robust and reliable machine learning applications. We focus on distributional shift that arises in causal inference from …

Max-margin learning with the Bayes Factor

We propose a new way to answer probabilistic queries that span multiple datapoints. We formalize reasoning about the similarity of different datapoints as the evaluation of the Bayes Factor within a hierarchical deep generative model that enforces a …

Optimality of Approximate Inference Algorithms on Stable Instances

Approximate algorithms for structured prediction problems -- such as LP relaxations and the popular alpha-expansion algorithm (Boykov et al. 2001) -- typically far exceed their theoretical performance guarantees on real-world instances. These …

Recurrent Neural Networks for Multivariate Time Series with Missing Values

Multivariate time series data in practical applications, such as health care, geoscience, and biology, are characterized by a variety of missing values. In time series prediction and other related tasks, it has been noted that missing values and …

Semi-Amortized Variational Autoencoders

Amortized variational inference (AVI) replaces instance-specific local inference with a global inference network. While AVI has enabled efficient training of deep generative models such as variational autoencoders (VAE), recent empirical work …

Why Is My Classifier Discriminatory?

Recent attempts to achieve fairness in predictive models focus on the balance between fairness and accuracy. In sensitive applications such as healthcare or criminal justice, this trade-off is often undesirable as any increase in prediction error …

Causal Effect Inference with Deep Latent-Variable Models

Learning individual-level causal effects from observational data, such as inferring the most effective medication for a specific patient, is a problem of growing importance for policy makers. The most important aspect of inferring causal effects from …